呼吸臨床

【特集】呼吸器科医に役立つ最先端のメカノバイオロジー研究

企画:寺崎泰弘,ゲストエディター:伊藤理


 生体は常に重力,圧力,ずり応力といった機械的刺激(メカニカルストレス)を受けています。これらメカニカルストレスがどのようにして細胞機能や生体の応答を制御するか,疾患の病態生理に関与するかを追究する研究が「メカノバイオロジー」です。呼吸器は多様なメカニカルストレスにさらされていることから,呼吸器の細胞機能・生理機能や呼吸器疾患の病態機序を解明するうえで,呼吸器メカノバイオロジー研究の果たすべき役割は大きいと期待されています。今回の特集では,メカノバイオロジーを紹介し,研究の魅力と課題をお伝えすることを企画しています。

(伊藤理)

2)各論:1.COPD・肺気腫におけるメカノバイオロジー

佐藤 晋*

*京都大学医学部附属病院リハビリテーション部・呼吸器内科(〒606-8507 京都府京都市左京区聖護院川原町54)


Mechanobiology in COPD and emphysema

Susumu Sato*
*Department of Respiratory Medicine and Rehabilitation Medicine, Kyoto University Hospital, Kyoto


Keywords:慢性閉塞性肺疾患,肺気腫,不均一,物理的力,末梢気道への肺胞接着/COPD,emphysema,heterogeneity,mechanical force,alveolar attachments


呼吸臨床 2017年1巻1号 論文No.e00018
Jpn Open J Respir Med 2017 Vol. 1 No. 1 Article No.e00018

DOI: 10.24557/kokyurinsho.1.e00018


掲載日:2017年10月20日


©️Susumu Sato. 本論文の複製権,翻訳権,上映権,譲渡権,貸与権,公衆送信権(送信可能化権を含む)は弊社に帰属し,それらの利用ならびに許諾等の管理は弊社が行います。


要旨

 複雑な構造の肺実質(肺胞)と肺間質,気道・脈管系は恒常的に物理的力(mechanical force)に曝され,さらに呼吸運動による周期的な力も影響を及ぼす。COPD/肺気腫は肺胞破壊が病理学的特徴であり,その分布は空間的に不均一(heterogeneous)であるが,その破壊が物理的力により制御されていることが明らかとなり,疾患進行機序が解明されつつある。

文献

  1. 日本呼吸器学会COPDガイドライン第4版作成委員会. COPD(慢性閉塞性肺疾患)診断と治療のためのガイドライン. 2013.
  2. West JB. Distribution of mechanical stress in the lung, a possible factor in localisation of pulmonary disease. The Lancet. 1971; 1: 839-41.
  3. Tanabe N, et al. Emphysema distribution and annual changes in pulmonary function in male patients with chronic obstructive pulmonary disease. Respir Res. 2012; 13: 31. doi:10.1186/1465-9921-13-31.
  4. Kononov S, et al. Roles of mechanical forces and collagen failure in the development of elastase-induced emphysema. Am J Respir Crit Care Med. 2001; 164: 1920-6.
  5. Szabari MV, et al. Acute mechanical forces cause deterioration in lung structure and function in elastase-induced emphysema. Am J Physiol Lung Cell Mol Physiol. 2012; 303: L567-74.
  6. Mishima M, et al. Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease. Proc Natl Acad Sci USA. 1999; 96: 8829-34.
  7. Mitsunobu F, et al. Complexity of terminal airspace geometry assessed by computed tomography in asthma. Am J Respir Crit Care Med. 2003; 167: 411-7.
  8. Tobino K, et al. Differentiation between Birt-Hogg-Dubé syndrome and lymphangioleiomyomatosis: quantitative analysis of pulmonary cysts on computed tomography of the chest in 66 females. Eur J Radiol. 2012; 81: 1340-6.
  9. Suki B, et al. On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med. 2003; 168: 516-21.
  10. Tanabe N, et al. Impact of exacerbations on emphysema progression in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011; 183: 1653-9.
  11. Tanabe N, et al. Longitudinal study of spatially heterogeneous emphysema progression in current smokers with chronic obstructive pulmonary disease. de Torres JP, ed. PLoS ONE. 2012; 7: e44993.
  12. Jesudason R, et al. Mechanical forces regulate elastase activity and binding site availability in lung elastin. Biophys J. 2010; 99: 3076-83.
  13. Yi E, et al. Mechanical forces accelerate collagen digestion by bacterial collagenase in lung tissue strips. Front Physiol. 2016; 7: 287.
  14. Hirai T, et al. Effects of deep inspiration on bronchoconstriction in the rat. Respir Physiol. 2001; 127: 201-15.
  15. Scichilone N, et al. Bronchodilatory effect of deep inspiration is absent in subjects with mild COPD. Chest. 2004; 125: 2029-35. 
  16. Scichilone N, et al. Association between reduced bronchodilatory effect of deep inspiration and loss of alveolar attachments. Respir Res. 2005; 6: 55.
  17. Tanabe N, et al. Micro-computed tomography comparison of preterminal bronchioles in centrilobular and panlobular emphysema. Am J Respir Crit Care Med. 2017; 195: 630-8..
  18. Gelb AF, et al. Unraveling the pathophysiology of the asthma-COPD overlap syndrome: unsuspected mild centrilobular emphysema is responsible for loss of lung elastic recoil in never smokers With asthma with persistent expiratory airflow limitation. Chest. 2015; 148: 313-20.
  19. Dolhnikoff M, et al. The outer wall of small airways is a major site of remodeling in fatal asthma. J Allergy Clin Immunol. 2009; 123: 1090–7–1097.e1.
  20. Khan MA, et al. Influence of airway wall stiffness and parenchymal tethering on the dynamics of bronchoconstriction. Am J Physiol Lung Cell Mol Physiol. 2010; 299: L98-108.
  21. Froese AR, et al. Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am J Respir Crit Care Med. 2016; 194: 84-96.
  22. Saetta M, et al. Loss of alveolar attachments in smokers. A morphometric correlate of lung function impairment. Am Rev Respir Dis. 1985; 132: 894-900.