呼吸臨床

【特集】呼吸器科医に役立つ最先端のメカノバイオロジー研究

企画:寺崎泰弘,ゲストエディター:伊藤理


 生体は常に重力,圧力,ずり応力といった機械的刺激(メカニカルストレス)を受けています。これらメカニカルストレスがどのようにして細胞機能や生体の応答を制御するか,疾患の病態生理に関与するかを追究する研究が「メカノバイオロジー」です。呼吸器は多様なメカニカルストレスにさらされていることから,呼吸器の細胞機能・生理機能や呼吸器疾患の病態機序を解明するうえで,呼吸器メカノバイオロジー研究の果たすべき役割は大きいと期待されています。今回の特集では,メカノバイオロジーを紹介し,研究の魅力と課題をお伝えすることを企画しています。

(伊藤理)

2)各論:4.メカノセラピーーメカノバイオロジーをどのように臨床応用するか?ー

小川 令*, 高田弘弥*

*日本医科大学形成外科(〒113-8602 東京都文京区千駄木1-1-5)


Mechanotherapy-How to apply mechanobiology for clinical application-

Rei Ogawa*, Hiroya Takada*

*Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo


Keywords:メカノセラピー, メカノメディシン, メカノメディケーション, メカノセンサー, メカノシグナル伝達経路/mechanotherapy, mechanomedicine, mechanomedication, mechanosensor, mechanosignaling pathway 


呼吸臨床 2017年1巻3号 論文No.e00021
Jpn Open J Respir Med 2017 Vol. 1 No. 3 Article No.e00021

DOI: 10.24557/kokyurinsho.1.e00021


掲載日:2017年12月11日


©️Rei Ogawa, et al. 本論文の複製権,翻訳権,上映権,譲渡権,貸与権,公衆送信権(送信可能化権を含む)は弊社に帰属し,それらの利用ならびに許諾等の管理は弊社が行います。


要旨

 メカノバイオロジーは,張力や浸透圧といった物理的刺激が,細胞,組織,臓器あるいは生体にどのような影響を与えるかを解析する生物物理学の研究領域である。メカノバイオロジーの概念をもとにした医学研究はメカノメディシンと言われるが,これを実際の臨床現場で考え,物理的環境をコントロールする医療はメカノセラピーと呼ばれる。本論文では,メカノメディシンを臨床応用する具体的方法論,すなわちメカノセラピーの具体的方法につき考察する。

文献

  1. Carter DR, et al. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998; 355: S41-55.
  2. Sachs F, et al. Stretch-activated ion channels and membrane mechanics. Neurosci Res Suppl. 1990; 12: S1-4.
  3. Hayakawa K, et al. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci. 2008; 121: 496-503.
  4. Ingber DE. Tensegrity and mechanotransduction. J Bodyw Mov Ther. 2008; 12: 198-200.
  5. Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol. 2008; 97: 163-79.
  6. Huang C, et al. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med. 2013; 19: 555-64.
  7. Huang C, Akaishi S, Ogawa R. Mechanosignaling pathways in cutaneous scarring. Arch Dermatol Res. 2012 ; 304: 589-97.
  8. Ogawa R. Mechanobiology of scarring. Wound Repair Regen. 2011; 19: s2-9.
  9. Ogawa R. Keloid and hypertrophic scarring may result from a mechanoreceptor or mechanosensitive nociceptor disorder. Med Hypotheses. 2008; 71: 493-500.
  10. Ogawa R, et al. Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J Cell Mol Med. 2013; 17: 817-22.
  11. Huang C, et al. Mechanotransduction in bone repair and regeneration. FASEB J. 2010; 24: 3625-32.
  12. Nobusue H, et al. Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation. Nat Commun. 2014; 5: 3368.
  13. Yuan Y, et al. Mechanobiology and mechanotherapy of adipose tissue-effect of mechanical force on fat tissue engineering. Plast Reconstr Surg  Glob Open. 2016; 3: e578.
  14. Findlay MW, et al. Tissue-engineered breast reconstruction: bridging the gap toward large-volume tissue engineering in humans. Plast Reconstr Surg. 2011; 128: 1206-15.
  15. Chin MS, et al. Analysis of neuropeptides in stretched skin. Plast Reconstr Surg. 2009; 124: 102-13.
  16. Chin MS, et al. In vivo acceleration of skin growth using a servo-controlled stretching device. Tissue Eng Part C Methods. 2010; 16: 397-405.
  17. Sano H, et al. Clinical evidence for the relationship between nail configuration and mechanical forces. Plast Reconstr Surg Glob Open. 2014; 2: e115.
  18. Sano H, et al. Role of mechanical forces in hand nail configuration asymmetry in hemiplegia: an analysis of four hundred thumb nails. Dermatology. 2013; 226: 315-8.
  19. Sano H, et al. Effect of mechanical forces on finger nail curvature: an analysis of the effect of occupation on finger nails. Dermatol Surg. 2014; 40: 441-5.
  20. Schwander M, et al. Review series: The cell biology of hearing. J Cell Biol. 2010; 190: 9-20.
  21. Koyama T, et al. Standardized scalp massage results in increased hair thickness by inducing stretching forces to dermal papilla cells in the subcutaneous tissue. Eplasty. 2016; 16: e8.
  22. Plikus MV, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008; 451: 340-4.
  23. Lantieri LA, et al. Vascular endothelial growth factor expression in expanded tissue: a possible mechanism of angiogenesis in tissue expansion. Plast Reconstr Surg. 1998; 101: 392-8.
  24. Orgill DP, et al. The mechanisms of action of vacuum assisted closure: more to learn. Surgery. 2009 ; 146: 40-51.
  25. Lu F, et al. Microdeformation of three-dimensional cultured fibroblasts induces gene expression and morphological changes. Ann Plast Surg. 2011; 66: 296-300.
  26. Erba P, et al. Angiogenesis in wounds treated by microdeformational wound therapy. Ann Surg. 2011; 253: 402-9.
  27. Younan G, et al. Analysis of nerve and neuropeptide patterns in vacuum-assisted closure-treated diabetic murine wounds. Plast Reconstr Surg. 2010; 126: 87-96.
  28. Qureshi AA, et al. Shock wave therapy in wound healing. Plast Reconstr Surg. 2011; 128: 721e-7e.
  29. Takada H, et al. Mechanosensitive ATP release from hemichannels and Ca²⁺ influx through TRPC6 accelerate wound closure in keratinocytes. J Cell Sci. 2014; 127: 4159-71.
  30. Takada H, et al. Hyperforin/HP-β-cyclodextrin enhances mechanosensitive Ca2+ signaling in HaCaT keratinocytes and in atopic skin ex vivo which accelerates wound healing. Biomed Res Int. 2017; 2017: 8701801.
  31. Akaishi S, et al. The relationship between keloid growth pattern and stretching tension: visual analysis using the finite element method. Ann Plast Surg. 2008; 60: 445-51.
  32. Ogawa R, et al. Clinical applications of basic research that shows reducing skin tension could prevent and treat abnormal scarring: the importance of fascial/subcutaneous tensile reduction sutures and flap surgery for keloid and hypertrophic scar reconstruction. J Nippon Med Sch. 2011; 78: 68-76.
  33. Grygorczyk R, et al. Imaging and characterization of stretch-induced ATP release from alveolar A549 cells. J Physiol. 2013; 591: 1195–215.
  34. Jiang HN, et al. Involvement of TRPC channels in lung cancer cell differentiation and the correlationanalysis in human non-small cell lung cancer. PLoS One. 2013; 8: e67637.
  35. Prevarskaya N, et al. Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer. 2011; 11: 609-18.
  36. Cui C, et al. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B. 2017; 7: 3-17.
  37. Ogawa R, et al. The effect of hydrostatic pressure on 3-D chondroinduction of human adipose-derived stem cells. Tissue Eng Part A. 2009; 15: 2937-45.
  38. Ogawa R, et al. Gene expression profile on hydrostatic pressure-driven three-dimensional cartilage induction using human adipose-derived stem cells and collagen gels. Tissue Eng Part A. 2015; 21: 257-66.
  39. Mizuno S, et al. Using changes in hydrostatic and osmotic pressure to manipulate metabolic function in chondrocytes. Am J Physiol Cell Physiol. 2011; 300: C1234-45.
  40. 小川 令. メカノバイオロジーから考えた気道の再生医学. 日気食会報. 2016; 67: 103-5.