" /> 【連載】呼吸との出会いと呼吸器との出会い:個人的履歴と呼吸器臨床における「呼吸」の意義■第12回② 人体生理学新領域paired signaling physiology:その基礎医学研究と臨床研究(2)Proprioception(深部固有知覚)と圧受容体Piezo2■貫和敏博 |
呼吸臨床

【連載】呼吸との出会いと呼吸器との出会い:個人的履歴と呼吸器臨床における「呼吸」の意義


第12回② 人体生理学新領域paired signaling physiology: その基礎医学研究と臨床研究 (2)Proprioception(深部固有知覚)と圧受容体Piezo2

貫和敏博*


*東北大学名誉教授


[Essays] A tale of two domains: "breathing movement" and "gas-exchange/lung science"

- A personal history and the significance of breathing in the respiratory medicine

No 12-2: Paired signaling physiology, a novel frontier of human physiology.

Basic medical science and clinical application:(2) Proprioception and Piezo2, a major mechanosensing

*Professor Emeritus, Tohoku University


呼吸臨床 2020年4巻3号 論文No.e00124
Jpn Open J Respir Med 2020 Vo4. No.3 Article No.e00124

DOI: 10.24557/kokyurinsho.4.e00124


掲載日:2020年3月23日


©️Toshihiro Nukiwa. 本論文の複製権,翻訳権,上映権,譲渡権,貸与権,公衆送信権(送信可能化権を含む)は弊社に帰属し,それらの利用ならびに許諾等の管理は弊社が行います。


(第12回①はこちら




文献

■12-1文献
  1. Matt Wilkinsonm, 著. 神奈川夏子, 訳. 脚・ひれ・翼はなぜ進化したのか:生き物の「動き」と「形」の4億年(原著: Restless Creatures: The Story of Life in Ten Movements, 2016). 東京: 草思社, 2019. この文献を検索:Google Scholar / PubMed
  2. Dubochet J. Why is it so difficult to accept Darwin's theory of evolution? Bioessays. 2011; 33: 240-2.
      この文献を検索:Google Scholar / PubMed
  3. Pijuan-Sala B, et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019; 566: 490–5.
      この文献を検索:Google Scholar / PubMed
  4. Sadler TW. ラングマン人体発生学第11版 (原著: Langman’s Medical Embryology, 13th ed). 安田峯生, ほか訳. 東京: メディカル・サイエンス・インターナショナル, 2019.
      この文献を検索:Google Scholar / PubMed
  5. Ferretti E, et al. Mesoderm specification and diversification: from single cells to emergent tissues. Curr Opin Cell Biol. 2019; 61:110-6.
      この文献を検索:Google Scholar / PubMed
  6. Nassari S, et al. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front Cell Dev Biol. 2017; 5: Article 22.
      この文献を検索:Google Scholar / PubMed
  7. Felsenthal N, et al. Mechanical regulation of musculoskeletal system development. Development. 2017; 144: 4271-83.
      この文献を検索:Google Scholar / PubMed
  8. Blitz E, et al. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development. 2013; 140: 2680-90.
      この文献を検索:Google Scholar / PubMed
  9. Sefton EM, et al. Connecting muscle development, birth defects, and evolution: An essential role for muscle connective tissue. Curr Top Dev Biol. 2019; 132: 137-76.
      この文献を検索:Google Scholar / PubMed


    ■12-2文献
  10. 貫和敏博. 呼吸との出会いと呼吸器との出会い: 個人的履歴と呼吸器臨床における「呼吸」の意義. 第11回アジアの伝統的身体と呼吸法―身体 (Fascia) 連携呼吸が拓く新たな医学としてのPaired signaling physiology序論. 呼臨. 2019; 3: e00091.
  11. Gandevia S, et al. Proprioception: The Sense within. Scientist. Sep 1, 2016. https://www.the-scientist.com/features/proprioception-the-sense-within-32940.
  12. Ellaway PH, et al. Muscle spindle and fusimotor activity in locomotion. J Anat. 2015; 227: 157–66.
  13. Proske U, et al. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012; 92: 1651-97.
  14. Goodwin GM, et al. Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science. 1972; 175: 1382-4.
  15. Swett JE, et al. Distribution and numbers of stretch receptors in medial gastrocnemius and soleus muscles of the cat. Anat Rec. 1960; 137: 453-60.
  16. Proske U, et al. The neural basis of the senses of effort, force and heaviness. Exp Brain Res. 2019; 237: 589-99.
  17. 貫和敏博. Molecular Biologyから呼吸器臨床を考える: バイリンガル呼吸器内科医を育成して. 第14章: 視点を変えて肺と呼吸運動を考える. 東京: 克誠堂出版, 2014: 226-230.
  18. 貫和敏博. 呼吸との出会いと呼吸器との出会い: 個人的履歴と呼吸器臨床における「呼吸」の意義. 第10回すべては全身への衝撃感から始まった−西野流呼吸法 (3): 「対気」−相互のactive expiration呼吸, connectedness感覚, Mirroring interoception. 呼臨. 2019; 3: e00088.
  19. Coste B, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science.2010; 330: 55-60.
  20. Douguet D, et al. Mammalian mechanoelectrical transduction: Structure and function of force-gated ion channels. Cell. 2019; 179: 340-54.
  21. Li Wang, et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature. 2019; 573: 225–9.
  22. McCleskey EW. A mechanism for touch. Nature. 2019; 573: 199-200.
  23. Woo SH, et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci. 2015; 18: 1756-62.
  24. Zimmerman A, et al. The gentle touch receptors of mammalian skin. Science. 2014; 346: 950-4.
  25. Anderson EO, et al. Piezo2 in cutaneous and proprioceptive mechanotransduction in vertebrates. Curr Top Membr. 2017; 79: 197-217.
  26. Woo SH, et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature. 2014; 509: 622-6.
  27. Maksimovic S, et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature. 2014; 509: 617-21.
  28. Ikeda R, et al. Piezo2 channel conductance and localization domains in Merkel cells of rat whisker hair follicles. Neurosci Lett. 2014; 583: 210-5.
  29. Abdo H, et al. Specialized cutaneous Schwann cells initiate pain sensation. Science. 2019; 365: 695-9.
  30. Kardon G. Development of the musculoskeletal system: meeting the neighbors. Development. 2011; 138: 2855-9.
  31. 宮田卓樹, ほか編. 脳の発生学: ニューロンの誕生・分化・回路形成. 第10章: 末梢神経系の発生. 京都: 化学同人, 2013.
  32. 貫和敏博. 呼吸との出会いと呼吸器との出会い: 個人的履歴と呼吸器臨床における「呼吸」の意義. 第7回坐禅とMindfulnessのneuroscience. 呼臨. 2018; 2: e00068.
  33. Nanay B. Multimodal mental imagery. Cortex. 2018; 105: 125-34.
  34. von der Emde G, et al. Cross-modal sensory transfer: Bumble bees do it. Science. 2020; 367: 850-1.