" /> 【特集】遺伝子診断を加味した画像診断■肺癌手術例の遺伝子変異とCT画像:oncogenic driver遺伝子変異を読み取ることができるか?■堀尾芳嗣 |
呼吸臨床

【特集】遺伝子診断を加味した画像診断

企画:楠本昌彦


 肺癌のドライバー遺伝子変異に関しては複数が見つかっており,それに対応した分子標的薬は肺癌診療を大きく進歩させつつある。肺癌の遺伝子異常は数多く調べられているが,これらの遺伝子異常とその肺癌が持つ画像的特徴については,まだまだ広く知られる状況にはない。それは,おそらくこれらの遺伝子情報が画像所見と直接結びつかないためと思われる。かといって,まったく無関係であるというのでもなさそうである。今回は,現在よく知られている肺癌の遺伝子異常とその肺癌がもつ画像的特徴について,現時点でどれだけの関連性があるのか,ないのか,ということに力点をおいてそれぞれのエキスパートに概説していただき,そのうえで臨床現場に還元できるところを探っていきたい。

肺癌手術例の遺伝子変異とCT画像:oncogenic driver遺伝子変異を読み取ることができるか?

堀尾芳嗣*


*愛知県がんセンター中央病院外来部/呼吸器内科部(〒464-8681 愛知県名古屋市千種区鹿子殿1-1)


Computed tomography imaging of lung cancer with oncogenic driver mutations: Can we predict somatic mutation status?

Yoshitsugu Horio*

*Department of Outpatient Services, Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya


Keywords:肺癌,ドライバー遺伝子変異,CT,すりガラス陰影,充実結節/lung cancer,driver mutation ,CT,ground-glass opacity,solid nodule



呼吸臨床 2018年2巻8号 論文No.e00051
Jpn Open J Respir Med 2018 Vol.2 No.8  Article No.e00051

DOI: 10.24557/kokyurinsho.2.e00051


掲載日:2018年8月31日


©️Yoshitsugu Horio. 本論文の複製権,翻訳権,上映権,譲渡権,貸与権,公衆送信権(送信可能化権を含む)は弊社に帰属し,それらの利用ならびに許諾等の管理は弊社が行います。





要旨

 高分解能computed tomography(high-resolution CT:HR-CT),薄層CT(thin-section CT:TS-CT),低線量CT(low dose CT:LD-CT)とすりガラス結節(ground-glass nodule:GGN)の概念や肺結節(solitary pulmonary nodule:SPN)の診療アルゴリズムの普及も手伝って末梢小型肺癌の検出率が上昇している。ここではoncogenic driver遺伝子変異からみた非小細胞肺癌のCT画像について話題を提供したい。


文献

  1. Yamashita H. Roentgenologic anatomy of the lung. Tokyo-New York: Igakushoin, 1978: 1-389.
  2. Suzuki A. Growth characteristics of peripheral type adenocarcinoma of the lung in terms of roentgenologic findings. In: Shimosato Y, Melamed MR, Nettesheim P, editors. Morphogenesis of Lung Cancer. Vol1. Florida: CRC press, 1982: 91-110.
  3. Heitzman ER. The lung. Radiologic-pathologic correlations. St. Louis: The C.V. Mosby, 1973: 300-12.
  4. Mori K, et al. Small nodular lesions in the lung periphery: new approach to diagnosis with CT. Radiology. 1990; 177: 843-9.
  5. Kuriyama K, et al. CT-pathologic correlation in small peripheral lung cancers. AJR. 1987; 149: 1139-43.
  6. Zwirewich CV, et al. Solitary pulmonary nodule: high-resolution CT and radiologic-pathologic correlation. Radiology. 1991; 179: 469-76.
  7. Takanashi N, et al. The diagnostic accuracy of a solitary pulmonary nodule, using thin-section high resolution CT: a solitary pulmonary nodule by HRCT. Lung Cancer. 1995; 13: 105-12.
  8. Itoh H, et al. Structural basis for pulmonary functional imaging. Eur J Radiol. 2001; 37: 143-54.
  9. Webb WR. Thin-section CT of the secondary pulmonary lobule: anatomy and the image--the 2004 Fleischner lecture. Radiology. 2006; 239: 322-38.
  10. Hansell DM, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008; 246: 697–722.
  11. MacMahon H, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005; 237: 395–400.
  12. Naidich DP, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology. 2013; 266: 304-17.
  13. Snoeckx A, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018; 9: 73-86.
  14. Divisi D, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the management of solitary pulmonary nodule: a review. Ann Med. 2017; 49: 626-35.
  15. National Comprehensive Cancer Network (NCCN] Guidelines: Non-Small Cell Lung Cancer (Version 4. 2018]. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
  16. Gao JW, et al. Written on behalf of the AME Lung Cancer Collaborative Group. Pulmonary ground-glass opacity: computed tomography features, histopathology and molecular pathology. Transl Lung Cancer Res. 2017; 6: 68-75.
  17. Chen B, et al. Development and clinical application of radiomics in lung cancer. Radiat Oncol. 2017; 12: 154.
  18. Lambin P, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017; 14: 749-62.
  19. Ariozzi I, et al. Computed tomography-histologic correlations in lung cancer. Pathologica. 2013; 105: 329-36.
  20. Noguchi M, et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer. 1995; 75: 2844-52.
  21. Travis WD, et al. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: International Agency for Research on Cancer, 2015.
  22. Cheng Z, et al. CT characteristics of non-small cell lung cancer with epidermal growth factor receptor mutation: a systematic review and meta-analysis. BMC Med Imaging. 2017; 17: 5.
  23. Villaruz LC, et al. Clinicopathologic features and outcomes of patients with lung adenocarcinomas harboring BRAF mutations in the Lung Cancer Mutation Consortium. Cancer. 2015; 121: 448-56.
  24. Kobayashi Y, et al. Genetic features of pulmonary adenocarcinoma presenting with ground-glass nodules: the differences between nodules with and without growth. Ann Oncol. 2015; 26: 156-61.
  25. Fukui T, et al. Clinicoradiologic characteristics of patients with lung adenocarcinoma harboring EML4-ALK fusion oncogene. Lung Cancer. 2012; 77: 319-25.
  26. Arcila ME, et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res. 2012; 18: 4910-8.
  27. Buttitta F, et al. Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: mutations are mainly present in adenocarcinomas with bronchioloalveolar features. Int J Cancer. 2006; 119: 2586-91.
  28. Sawan P, et al. CT features of HER2-mutant lung adenocarcinomas. Clin Imaging. 2018; 51: 279-83.
  29. Plodkowski AJ, et al. From genotype to phenotype: Are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROS1 rearrangements? Lung Cancer. 2015; 90: 321-5.
  30. Yatabe Y, et al. TTF-1 expression in pulmonary adenocarcinomas. Am J Surg Pathol. 2002; 26: 767-73.