" /> 【連載】肺癌画像診断の“勘”どころ〜最終診断への道しるべ■CT画像診断のコツ 肺野型肺癌:非小細胞肺癌(腺癌)ー肺腺癌のCT画像:病理学的浸潤巣に基づいたCT所見ー■梁川雅弘,ほか |
呼吸臨床

【連載】肺癌画像診断の“勘”どころ〜最終診断への道しるべ

企画:酒井文和


 肺癌の診断における画像診断の役割は,その検出,肺癌かその他の疾患かの鑑別診断,臨床病期分類などさまざまな役割がある。現在では,単純X線撮影の主な役割は異常陰影の検出,CTは肺癌か他疾患かの鑑別診断,臨床病期分類の診断などが挙げられる。またMR,FDG-PETが併用されることも少なくない。これらの多岐にわたる画像診断をいかにうまく組み合わせて最終診断にいたるか,また主な画像所見とどのような画像所見が鑑別上重要か? 鑑別診断のコツなどを解説いただく。肺癌集団検診の動向,合理的運用方法,また検診で発見された異常の合理的扱い方法についても解説いただく。

CT画像診断のコツ 肺野型肺癌:非小細胞肺癌(腺癌)ー肺腺癌のCT画像:病理学的浸潤巣に基づいたCT所見

梁川雅弘*,本多 修*,富山憲幸*


*大阪大学大学院医学系研究科放射線統合医学講座放射線医学教室(〒565-0871 大阪府吹田市山田丘2-2)


CT imaging of lung adenocarcinoma: CT findings based on pathological invasiveness

Masahiro Yanagawa*, Osamu Honda*, Noriyuki Tomiyama*

*Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka


Keywords:CT,肺癌,腺癌,浸潤径,病理学的浸潤/computed tomography,lung cancer,adenocarcinoma,invasiveness size,pathologic invasiveness


呼吸臨床 2019年3巻4号 論文No.e00079
Jpn Open J Respir Med 2019 Vol.3 No.4  Article No.e00079

DOI: 10.24557/kokyurinsho.3.e00079


掲載日:2019年4月8日


©️Masahiro Yanagawa, et al. 本論文の複製権,翻訳権,上映権,譲渡権,貸与権,公衆送信権(送信可能化権を含む)は弊社に帰属し,それらの利用ならびに許諾等の管理は弊社が行います。





要旨

 肺腺癌は,非小細胞肺癌の中で最も多い組織型の肺野型肺癌ある。2011年より浸潤という概念に基づき,上皮内腺癌,微少浸潤性腺癌,浸潤性腺癌,特殊型腺癌に細分化されるようになり,予後や遺伝的背景に沿った集学的な分類がなされるようになった。また,TNM分類第8版においては,T分類を決定するためにCT上での浸潤径の計測が重要視されている。したがって,肺腺癌のCT画像所見を十分に理解しておくことは重要であり,本稿では画像所見の他,病理学的浸潤巣にも焦点を当てながら,肺腺癌のCT画像診断について解説する。


文献

  1. Li F, et al. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology. 2004; 233: 793-8.
  2. Kim Y, et al. Halo sign on high resolution CT: findings in spectrum of pulmonary diseases with pathologic correlation. J Comput Assist Tomogr. 1999; 23: 622-6.
  3. Webb WR. Radiologic evaluation of the solitary nodule. AJR 1990; 154: 701-8.
  4. Kuriyama K, et al. Prevalence of air bronchograms in small peripheral carcinomas of the lung on thin-section CT: comparison with benign tumors. AJR Am J Roentgenol. 1991; 156: 921-4.
  5. Swensen SJ, et al. Lung nodule enhancement at CT: multicenter study. Radiology. 2000; 214: 73-80.
  6. Morimoto K, et al. A pitfall of CT findings in peripheral lung adenocarcinoma. J Comput Assist Tomogr. 2002; 26: 197-8.
  7. Tanimoto D, et al. Serial 3-dimensional volumetric computed tomography evaluation of lung cancer growth rate in patients with chronic obstructive pulmonary disease findings. J Comput Assist Tomogr. 2012; 36: 181-6.
  8. Lee HJ, et al. Lung cancer in patients with idiopathic pulmonary fibrosis: CT findings. J Comput Assist Tomogr. 1996; 20: 979-82.
  9. Sakai S, et al. Lung cancer associated with diffuse pulmonary fibrosis: CT-pathologic correlation. J Thorac Imaging. 2003; 18: 67-71.
  10. Kim C, et al. Volume doubling time of lung cancer detected in idiopathic interstitial pneumonia:  comparison with that in chronic obstructive pulmonary disease. Eur Radiol. 2018; 28: 1402-9.
  11. Lillington GA. Management of solitary pulmonary nodules. Dis Mon. 1991; 37: 271-318.
  12. Thunnissen FB, et al. A critical appraisal of prognostic and predictive factors for common lung cancers. Histopathology. 2006; 48: 779-86.
  13. Oh SY, et al. Evolving early lung cancers detected during follow-up of idiopathic interstitial pneumonia: Serial CT features. AJR Am J Roentgenol. 2015; 204: 1190-6.
  14. Asamura H, et al. Japanese Joint Committee of Lung Cancer Registry. A Japanese Lung Cancer Registry study: prognosis of 13,010 resected lung cancers. J Thorac Oncol. 2008; 3: 46-52.
  15. Travis WD, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011; 6: 244-85.
  16. Yatabe Y. EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev. 2010; 29: 23-36.
  17. Park J, et al. Imaging characteristics of driver mutations in EGFR, KRAS, and ALK among treatment-naïve patients with advanced lung adenocarcinoma. PLoS One. 2016; 11: e0161081.
  18. Oda S, et al. Ground-glass opacities on thin-section helical CT: differentiation between bronchioloalveolar carcinoma and atypical adenomatous hyperplasia. AJR Am J Roentgenol. 2008; 190: 1363-8.
  19. Moon Y, et al. Pure ground-glass opacity on chest computed tomography: predictive factors for invasive adenocarcinoma. J Thorac Dis. 2016; 8: 1561-70.
  20. Maeshima AM, et al. Histological scoring for small lung adenocarcinomas 2 cm or less in diameter: a reliable prognostic indicator. J Thorac Oncol. 2010; 5: 333-9.
  21. Tsutani Y, et al. The prognostic role of pathologic invasive component size, excluding lepidic growth, in stage I lung adenocarcinoma. J Thorac Cardiovasc Surg. 2013; 146: 580-5.
  22. Hsu PK, et al. Effect of formalin fixation on tumor size determination in stage I non-small cell lung cancer. Ann Thorac Surg. 2007; 84: 1825-9.
  23. Yanagawa M, et al. Investigators of JSTR Lung Cancer Working Group. Radiologic-pathologic correlation of solid portions on thin-section CT images in lung adenocarcinoma: A multicenter study. Clin Lung Cancer. 2018; 19: e303-12.
  24. Yanagawa M, et al. Radiological prediction of tumor invasiveness of lung adenocarcinoma on thin-section CT. Medicine (Baltimore). 2017; 96: e6331.
  25. She Y, et al. Preoperative nomogram for identifying invasive pulmonary adenocarcinoma in patients with pure ground-glass nodule: A multi-institutional study. Oncotarget. 2017; 8: 17229-38.
  26. Lee SM, et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology. 2013; 268: 265-73.
  27. Wilshire CL, et al. Radiologic evaluation of small lepidic adenocarcinomas to guide decision making in surgical resection. Ann Thorac Surg. 2015; 100: 979-88.
  28. Yanagawa M, et al. Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs. Eur Radiol. 2018; 28: 5060-8.