" /> 【連載】第12回 人体生理学新領域paired signaling physiology(3)体幹エンジンシステムが制御する体幹筋群locomotion運動 3)「深身体」である体幹MMC神経路へのアクセスが
東洋系操体・呼吸法の意義■貫和敏博 |
呼吸臨床

【連載】呼吸との出会いと呼吸器との出会い:個人的履歴と呼吸器臨床における「呼吸」の意義


第12回 人体生理学新領域paired signaling physiology:その基礎医学研究と臨床研究
(3)体幹エンジンシステム〔大脳基底核+脊髄CPGs(central pattern generators)〕が制御する体幹筋群locomotion運動:
21世紀脳科学が示唆する東洋系操体との関連
3)「深身体」である体幹MMC神経路へのアクセスが
東洋系操体・呼吸法の意義

貫和敏博*


*東北大学名誉教授


[Essays] A tale of two domains: "breathing movement" and "gas-exchange/lung science"

- A personal history and the significance of breathing in the respiratory medicine

No 12-3: Paired-signaling physiology, a novel frontier of human physiology: Basic medical science and clinical apprication: (3) The body-trunk engine system (basal ganglia and central pattern generators of the spine) controls the locomotion movement of the epaxial and hypaxial muscles: The relation of the oriental bodywork to the trunk system is suggested by the 21st century brain science.

3) The significance of oriental bodywork and breathing method is to access the "deep body", i.e. the body-trunk MMC nerve column


呼吸臨床 2021年5巻7号 論文No.e00127
Jpn Open J Respir Med 2021 Vo5. No.7 Article No.e00127

DOI: 10.24557/kokyurinsho.5.e00127


掲載日:2021年7月15日


©️Toshihiro Nukiwa. 本論文の複製権,翻訳権,上映権,譲渡権,貸与権,公衆送信権(送信可能化権を含む)は弊社に帰属し,それらの利用ならびに許諾等の管理は弊社が行います。


(第12回3-2はこちら

まえふり

 第12回 3-1),3-2) で議論した我々脊椎動物の「深身体」(体幹エンジン運動体)は筆者にとっては驚きの展開となった。

 自分が探索している東洋系身体の実態の医学的記述すらできない中で,医学生理学の常識である随意運動以外の,進化的に旧い運動機構が存在する。しかも21世紀に入り,活発な研究展開がなされている。特に西野流呼吸法ではしばしば遭遇するLocomotion系反応が,そもそも「大脳基底核+脊髄CPGs」で説明できる可能性がある。さらに広く,一般に訓練の意義すら不明であった東洋系操体は身体の何にアクセスするのか,という理解にも繋がるものである。

 第12回 3-3) では,連載の最後として,この体幹運動系筋群と東洋伝承操体を議論する。

文献

  1. Grillner S, et al. Current principles of motor control, with special reference to vertebrate locomotion. Physiol Rev. 2020; 100: 271-320.
  2. 木場克己. みんなができる! 体幹バランス ブレない・ケガしない体へ (NHK趣味どきっ!) ムック. 東京: NHK出版, 2020.
  3. 生江有二. 気の力―西野流呼吸法の世界. 小学館文庫638. 東京: 小学館, 1998.
  4. Sharma K, et al. Genetic and epigenetic mechanisms contribute to motor neuron pathfinding. Nature. 2000; 406: 515-9.
  5. Francius C, et al. Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell Mol Life Sci. 2014; 71: 813-29.
  6. Alaynick WA, et al. spinal cord development. Cell. 2011; 146: 178-178.e1.
  7. von Twickel A, et al. Individual dopaminergic neurons of lamprey SNc/VTA project to both the striatum and optic tectum but restrict co-release of glutamate to striatum only. Curr Biol. 2019; 29: 677-685.e6.
  8. Shahar Alon, et al. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science. 2021; 371: eaax2656.
  9. Arber S, et al. Connecting neuronal circuits for movement. Science. 2018; 360: 1403–4.
  10. 苅部冬紀, ほか. 大脳基底核-意思と行動の狭間にある神経路 (ブレインサイエンス・レクチャー#7). 市川眞澄, 編. 東京: 共立出版,2019.
  11. Oorschot DE. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol. 1996; 366: 580-99.
  12. Hikosaka O, et al. Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Res 1983; 272: 368–72.
  13. Nambu A, et al. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res. 2002; 43: 111-7.
  14. Bromberg-Martin ES, et al. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010; 68: 815-34.
  15. Grillner S, et al. The basal ganglia over 500 million years. Curr Biol. 2016; 26: R1088-R1100.
  16. Chou MY, et al. Social conflict resolution regulated by two dorsal habenular subregions in zebrafish. Science. 2016; 352: 87-90.
  17. 佐藤 宏, 訳. リープマン神経解剖学, 第3版. 東京: メディカル・サイエンス・インターナショナル, 2008.
  18. Dominici N, et al. Locomotor primitives in newborn babies and their development. Science. 2011; 334: 997–9.
  19. Merkulyeva N, et al. Distribution of spinal neuronal networks controlling forward and backward locomotion. J Neurosci. 2018; 38: 4695–707.
  20. Jung H, et al. The ancient origins of neural substrates for land walking. Cell. 2018; 172: 667-82.e15.
  21. Nagashima H, et al. Novel concept for the epaxial/hypaxial boundary based on neuronal development. J Anat. 2020; 237: 427-38.
  22. Homma S, et al. Three-component model of the spinal nerve branching pattern, based on the view of the lateral somitic frontier and experimental validation. doi: https://doi.org/10.1101/2020.07.29.227710, bioRxiv.
  23. 成瀬悟策. 動作療法―まったく新しい心理療法の理論と方法. 東京: 誠信書房, 2000.
  24. 増永静人. イメージ健康体操-経絡体操. 東京: 医王会指圧研究所, 1979.
  25. Yu X, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature. 2019; 575: 473-9.
  26. Grillner S, et al. The edge cell, a possible intraspinal mechanoreceptor. Science. 1984; 223: 500-3.
  27. Del Negro CA, et al. Breathing matters. Nat Rev Neurosci. 2018; 19: 351-67.
  28. Yinan Wan, et al. Single-cell reconstruction of emerging population activity in an entire developing circuit. Cell. 2019; 79: 55-372.e23.